Report of the Smalley Foundation Committee

Cooperative Meal Samples for the Season 1928-1929

By H. C. Moore, Chairman

HE following five tables give a summary of the results of cooperative analytical work of the Smalley Foundation for oil and ammonia for the past year.

The work was concluded with sample No. 33, reported on April 17, 1929. The number of collaborators participating this year is 102, as compared to 75, 78, 88 and 91 for the four preceding years.

In Table No. I is shown the standing of the 46 collaborators who reported oil determinations on all samples. In the previous year 42 reported on all samples, as compared to 43, 35, 29 and 36 respectively in the four preceding years. Table No. II shows the corresponding standing of the 74 collaborators who reported ammonia results on all samples. This number compares with 63, 65, 52 and 42 in the four preceding years. Table No. III gives the combined average standing for both oil and Table No. III gives the ammonia for the 46 collaborators who reported both oil and ammonia on all samples. In the previous year 42 collaborators reported oil and ammonia results on all samples, as compared to 43, 35, 29 and 36 respectively for the four preceding years. Table No. IV gives the summary of results of other collaborators who have failed to report on all samples, but whose results deserve recognition. Table No. V gives an idea of the range of agreement of results for oil and ammonia separately on the 30 samples. The best general agreement for oil is found in the case of sample No. 12, and for ammonia on sample No. 6; the poorest agreement for oil is in the case of sample No. 27, and for ammonia on sample No. 13. This table shows the maximum, minimum and average number of collaborators in the case of oil and ammonia within the three ranges chosen for all samples.

The awards for the best work on the thirty samples are the same as for several seasons past, and as published in the Cotton Oil Press in 1923. The prize winners are as follows:

The Battle cup for the highest efficiency in the determination of both oil and ammonia is awarded to No. 85, Geo. W. Gooch Laboratories, Los Angeles, California, whose average is 99.874 per cent. The certificate for second place goes to No. 21, Dr. W. F. Hand, State Chemist of Mississippi, whose average efficiency is 99.848 per cent. The corresponding

percentages for the two previous years were 99.934 and 99.899½, 99.919½ and 99.901 per cent, respectively. The collaborators will recall that the present cup was generously furnished by Dr. H. B. Battle of Montgomery, after he had been awarded permanently the original cup, having won it on three different occasions. This year is the third award of this cup. It was awarded to Dr. W. F. Hand, State Chemist, A. & M. College, Mississippi, in 1926-27; to Mr. E. H. Tenent, International Sugar Feed Co., Memphis, Tenn., in 1927-28.

The certificate for the highest efficiency in the determination of oil is awarded to No. 85, Geo. W. Gooch Laboratories, Los Angeles. whose average is 99.839 per cent, and the certificate for second place goes to No. 63. Mr. D. B. McIsaac, International Vegetable Oil Co., Savannah, whose average is 99.791 per cent. The corresponding percentages for the two previous years were 99.920 and 99.895, 99.878 and 99.852 per cent, respectively. The two certificates for the highest efficiency in the determination of ammonia are awarded to No. 5, Mr. R. D. Caldwell, Armour Fertilizer Works, Atlanta, Georgia, and No. 52, Southwestern Laboratories, Dallas, Texas, who are tied for first place, their average efficiency being 99.974 per cent. No. 48, Mr. George K. Redding, The Larrowe Milling Co., Rossford. Ohio, and No. 96, Mr. Landon C. Moore, Dallas, Texas, are tied for second place, their average efficiency being 99.965 per cent. The corresponding percentages for the two previous years were 99.970 and 99.965, 99.996 and 99.988 per cent. In accordance with the resolution adopted by the American Oil Chemists' Society, the identity of the other collaborators will not be disclosed. It will be observed from the foregoing that the percentage efficiency for ammonia determinations during the past year is very nearly as high as that for the previous year, but the efficiency for the oil results does not compare quite as favorably with those for the previous year.

The method for determining the standing of the various collaborators and their per cent efficiency is the same as has been used for several years past, and is fully described in the January, 1923, issue of the Cotton Oil Press, Vol. VI, No. 9, Page 33. The same rule also has been used as heretofore in calculating the accepted averages, as follows:

All results are listed in an ascending order from the lowest to the highest and a preliminary average calculated after omitting results which are obviously extreme. Next, all results within plus or minus 0.10 per cent from the preliminary average are taken and a new average called "A" is calculated. In other words, if 7.50 is the preliminary average, then all results from 7.40 to 7.60 inclusive are taken. Next is found the largest number of results within the "A" group which are within a range of 0.10 per cent, (that is, say 7.40 to 7.50 inclusive, 7.41 to 7.51 inclusive, or 7.45 to 7.55 inclusive, etc.) and the results in this group used to calculate average "B." The accepted average is the average of "A" and "B" taken to the nearest 0.01. In case this cal-culated average should be exactly half way between two values 0.01 apart, then the "B" result is favored, that is, in case the "A" result is 7.500 and "B" 7.510 and the average of "A" and "B" 7.505, the average would be 7.51. In order that this report may be published in the May issue of Oil & Fat Industries, the chairman has been obliged to complete his calculations before receiving replies from the collaborators, giving their record of "points off" on all samples, and it is hoped that these tabulations are correct, but he will gladly acknowledge any errors which may appear.

There have been very few complaints from the collaborators regarding the samples during this past year, and the chairman feels sure that the committee, as well as all the collaborators, wish to thank Mr. Law for his painstaking work in the preparation and handling of the samples. Mr. Law, however, has requested that he be advised if there is any doubt as to the uniformity of the samples, and the chairman has passed on to him the few comments that have been received. An opportunity has been afforded all the collaborators to be advised by wire collect in case their reports are not received at the appointed time each week or in case there seems to be a typographical error in their reports. Only 51 have taken advantage of this offer. There have been one or two misunderstandings in this respect where collaborators have understood that they were marked to be wired in such cases, when no such request had been received by the chairman, and the chairman has been obliged under our rules to accept only such results as are received before the report goes to press, which includes Tuesday of each week. Results which have been received early Wednesday morning before the copy is sent to the printer have been accepted; however these results are not counted in making up the accepted average. It is, of course, possible that the number of results received after the average has been calculated might change this result as much as .01, although this condition would rarely occur.

This year's report of the Smalley Foundation shows considerable progress in the number of collaborators enrolled, even though the per cent efficiency is not quite as high as in the two preceding years, when an unusually high efficiency record was established. value of the cooperative work is becoming more and more appreciated and enlisting the interest of an increasingly larger number of state, commercial and works laboratories, including in the latter those of the oil, fertilizer and milling industries. The chairman wishes to remark once more that the purpose of the Smalley Foundation is through cooperative work to improve the quality and standard of analytical work in determining oil and ammonia, and not to provide a prize contest. It is believed that it will be generally agreed that in this respect

Table I—Oil Results, All Samples (Average analysis, Oil 6.84)

	(6	,		
Rank	An. No.	Points off	Av, per sample	Efficiency
	85		-	
1 2 3	85 6 3	33 43	.0110	99.839
2			.0143	99.791
4	78	46	.0153	99.774
5	21	47	.0157	99.770
5	47	49	.0163	99.762
6	∫ 79 } 87	51 51	.0170	99.751
8) 87 64		.0170	99.751
9		54	.0180	99.737
10	73	58	.0193	99.718
11	1 48	60	.0200	99.707
12	+8 88	62 81	.0207	99.697
		87	.0270	99.605
13	{ 81 } 94		.0290	99.576
15		87	.0290	99.576
16	32	92	.0307	99.551
17	35	95	.0317	99.536
18	68′	107	.0357	99.478
19	22 50	109	.0363	99.469
		112	.0373	99.455
20	41	114	.0380	99.445
21 22	52	119	.0397	99.420
23	82	123	.0410	99.400
23	46	124	.0413	99.396
24 25	84 51	131	.0437	99.361
23		134	.0447	99.347
26 27	36	137	.0457	99.332
	83	138	.0460	99.327
28	{ 42	139 139	.0463	99.323
30	-) 53 55		.0463	99.323
31	33	143	.0477	99.303
32	-3 40	153 155	.0510	99.254
33	96	159	.0517	99.243
34	66	167	.0530 .0557	99.225
35	90	203	.0677	99.185
36	69	203 205	.0683	99.010
37	54	224	.0747	99.000
38	14	231	.0777	98.905
39	86	237		98.872
40	49	253	.0790 .0843	98.844
41	2	255	.0850	98.766
42	13	326	.1087	98.756
43	77	336	.1120	98.411 98.360
44	91	361	.1203	98.360 98.240
45	92	749	.2497	
46	14	846	.2820	96. 350 95. 87 5
70	14	070	.2020	23.8/3

·			Av. per	
Rank	An. No.	Points off	sample	Efficiency
58	35	81	.0270	99.648
59	39	85	.0283	99.631
60	88	96	.0320	99.583
61	(29	97	.0323	99.578
	191	97	.0323	99.578
63	` 74	101	.0337	99.560
64	92	102	.0340	99.556
65	16	108	.0360	99.530
66	17	118	.0393	99,488
67	(42	121	.0403	99.474
-	1 82	121.	.0403	99.474
69	` 60	124	.0413	99.462
70	15	125	.0417	99.456
71	32	130	.0433	99.435
72	14	132	.0440	99,426
73	76	137	.0457	99.404
74	77	218	.0727	99.050

Table II—Ammonia Results, All Samples (Average analysis, Ammonia 7.67)

	(, 520, 11		,
Rank	An. No.	Points off	Av. per	E#:.:
		6	sample .0020	Efficiency
1	$\begin{cases} 5\\52\end{cases}$	6	.0020	99.974 99.974
	{ 48	8	.0027	
3	{ 96	8	.0027	99.965
	10	14	.0047	99.965
5	81	14	.0047	99.939
7	30	15	.0050	99.939
	ر ر و	16	.0053	99.935
8	} 47	16	.0053	99.931
	18	16 17	.0057	99.931
10	21	17	.0057	99.926
10	64	17	.0057	99.926
13	55	18		99.926
13	33 78	20	.0060	99.922
15	85	21	.0067	99.913
16	65	23	.0070	99.909
17	7	23 24	.0077	99.900
18	ıí	24 25	.0080	99.886
		23	.0083	99.892
19	13	26	.0087	99.887
20	{ 26	28	.0093	99.879
22	7 66	28	.0093	99.879
23	84	29	.0097	99.874
24	73 4	30	.0100	99.870
4+	ίį	31	.0103	99.866
25	3 53	33	.0110	99.857
27	90	33	.0110	99.857
21	f 22	34	.0113	99.853
		35	.0117	99.848
28	44 62	35	.0117	99.848
20	1 69	33	.0117	99.848
	94	35	.0117	99.848
33	46	35 35 35 37	.0117	99.848
34	51	38	.0123 .0127	99.840
	(³¹ / ₂₈	39	.0127	99.835
35	89	39	.0130	99.831
37	87	43		99.831
38	3	44	.0143 .0147	99.814
39	7 <u>9</u>	45	.0150	99.808
40	24	48	.0160	99.805
	(2	49	.0160	99.791 99.787
	$\begin{cases} \frac{2}{12} \end{cases}$	49	.0163	
41	1 18	49	.0163	99.787 99.787
••	54	49	.0163	99.787
45	36	50	.0167	99.782
46	41	53	.0177	99.769
47	43	55	.0183	99.761
48	83	57	.0190	99.752
49	68	59	.0197	99.743
5ó	25	60	.0200	99.739
51	23	62	.0207	00 730
52	63	64	.0213	99.730 99.722
53	50	65	.0217	99.717
54	75	69	.0230	99.700
55	40	70	.0233	99.696
56	86	72	.0240	99.687
57	49	78	.0260	99.661
				JJ.001

the Smalley Foundation continues to accomplish its purpose. It is quite apparent that much further progress is possible in the direction of more uniform results for moisture, although improvement has been noted in these results, due very largely, undoubtedly, to continued thought and study of this matter and the improvement in drying ovens now avail-

able. In conclusion the chairman wishes to thank the collaborators and the members of the committee for their cooperation at all times.

Table III—Oil and Ammonia Results,

	All Samples	
Rank	Analyst	Efficiency
	85	99.874
2	21	99.848
1 2 3 4 5 6 7 8 9	47	99.8461/2
4	78	99.8431/2
Ġ	64	99.831 1/2
š	48	99.831
7	73	99.794
, Q	87	99.7821/2
ă	í	99.782
10	79	99.778
11	81	99.7571/2
12	63	99.7561/2
13	94	99.730%
14	52	99.712
15		99.697
15	22	99.6581/2
16	46	99.618
17	84	99.6171/
18	55	99.6121/2
19	68	99.6103/2
20	41	99.607
21	96	99.595
22	35	99.592
23	51	99.591
24	53	99.590
25	88	99.594
26	50	99.586
27	36	99.557
28	83	99.5391/2
29	66	99.532
30	3	99.531
31	32	99.493
32	40	99.4691/2
33	82	99.437
34	90	99.4311/2
35	69	99,424
36	42	99.3981/2
37	44	99.360
38	54	99.346
39	2	99.2711/2
40	86	99.2651/2
41	49	99.2131/2
42	13	99.149
43	91	98.909
44	77	98.705
45	92	97.953
46	14	97.6501/2

Table IV—Results of Other Collaborators Whose Results Deserve Recognition

	No. samples		Peints off
Analyst	reported on	Oil	Ammonia
9"	- 29	_	33
19	27		101
20	28	167	96.
2 7	25	_	40
33	29		97
34	27 - 28	81	92
37	22		38
56	24	97	30
5 <i>7</i>	26	200	50
58	21	_	28
61	20	254	60
-57	26	274	222
70	25	242	34
72	20-21	409	94
80	29	38	23
93	24	40	108
95	26	_	60
99	29	209	74
100	22-26	120	42
101	27		18

Table V

				•		
		No. borators orting	No. Results ± .10 OIL	No. Results ± .05	No. Results ± .02	Sample No.
	uniformity	63	50	37	20	12 27
Min. Av.	"	55 59	40 45	21 31	16	
			AMMON	IA		
Max.	uniformity	96	96	81	49	6
Min.	**	91	79	66	37	13
Av.	**	93	86	76	46	